- Overview - 综述
- Q&A - 常见问题
- App - 应用
- Console - 控制台
- CoordinatesBasedAutomation - 基于坐标的操作
- Device - 设备
- Dialogs - 对话框
- Engines - 脚本引擎
- Events - 事件与监听
- Floaty - 悬浮窗
- Files - 文件系统
- Globals - 一般全局函数
- Http - HTTP
- Images - 图片与图色处理
- Keys - 按键模拟
- Media - 多媒体
- Modules - 模块
- WidgetsBasedAutomation - 基于控件的操作
- Sensors - 传感器
- Shell - Shell命令
- Storages - 本地存储
- Threads - 多线程
- Timers - 定时器
- UI - 用户界面
- Work with Java - 调用Java API
Auto.js 4.1.0 文档
目录
- colors
- colors.BLACK
- colors.DKGRAY
- colors.GRAY
- colors.LTGRAY
- colors.WHITE
- colors.RED
- colors.GREEN
- colors.BLUE
- colors.YELLOW
- colors.CYAN
- colors.MAGENTA
- colors.TRANSPARENT
- Images
- 图片处理
- images.read(path)
- images.load(url)
- images.copy(img)
- images.save(image, path[, format = "png", quality = 100])
- images.fromBase64(base64)
- images.toBase64(img[, format = "png", quality = 100])
- images.fromBytes(bytes)
- images.toBytes(img[, format = "png", quality = 100])
- images.clip(img, x, y, w, h)
- images.resize(img, size[, interpolation])
- images.scale(img, fx, fy[, interpolation])
- images.rotate(img, degress[, x, y])
- images.concat(img1, image2[, direction])
- images.grayscale(img)
- image.threshold(img, threshold, maxVal[, type])
- images.adaptiveThreshold(img, maxValue, adaptiveMethod, thresholdType, blockSize, C)
- images.cvtColor(img, code[, dstCn])
- images.inRange(img, lowerBound, upperBound)
- images.interval(img, color, interval)
- images.blur(img, size[, anchor, type])
- images.medianBlur(img, size)
- images.gaussianBlur(img, size[, sigmaX, sigmaY, type])
- images.matToImage(mat)
- 找图找色
- images.requestScreenCapture([landscape])
- images.captureScreen()
- images.captureScreen(path)
- images.pixel(image, x, y)
- images.findColor(image, color, options)
- images.findColorInRegion(img, color, x, y[, width, height, threshold])
- images.findColorEquals(img, color[, x, y, width, height])
- images.findMultiColors(img, firstColor, colors[, options])
- images.detectsColor(image, color, x, y[, threshold = 16, algorithm = "diff"])
- images.findImage(img, template[, options])
- images.findImageInRegion(img, template, x, y[, width, height, threshold])
- images.matchTemplate(img, template, options)
- MatchingResult
- Image
- Point
colors#
在Auto.js有两种方式表示一个颜色。
一种是使用一个字符串"#AARRGGBB"或"#RRGGBB",其中 AA 是Alpha通道(透明度)的值,RR 是R通道(红色)的值,GG 是G通道(绿色)的值,BB是B通道(蓝色)的值。例如"#ffffff"表示白色, "#7F000000"表示半透明的黑色。
另一种是使用一个16进制的"32位整数" 0xAARRGGBB 来表示一个颜色,例如 0xFF112233
表示颜色"#112233", 0x11223344
表示颜色"#11223344"。
可以通过colors.toString()
把颜色整数转换为字符串,通过colors.parseColor()
把颜色字符串解析为颜色整数。
colors.toString(color)#
返回颜色值的字符串,格式为 "#AARRGGBB"。
colors.red(color)#
返回颜色color的R通道的值,范围0~255.
colors.green(color)#
返回颜色color的G通道的值,范围0~255.
colors.blue(color)#
返回颜色color的B通道的值,范围0~255.
colors.alpha(color)#
返回颜色color的Alpha通道的值,范围0~255.
colors.rgb(red, green, blue)#
返回这些颜色通道构成的整数颜色值。Alpha通道将是255(不透明)。
colors.argb(alpha, red, green, blue)#
返回这些颜色通道构成的整数颜色值。
colors.parseColor(colorStr)#
返回颜色的整数值。
colors.isSimilar(color2, color2[, threshold, algorithm])#
color1
<number> | <string> 颜色值1color1
<number> | <string> 颜色值2threshold
<number> 颜色相似度临界值,默认为4。取值范围为0~255。这个值越大表示允许的相似程度越小,如果这个值为0,则两个颜色相等时该函数才会返回true。algorithm
<string> 颜色匹配算法,默认为"diff", 包括:- "diff": 差值匹配。与给定颜色的R、G、B差的绝对值之和小于threshold时匹配。
- "rgb": rgb欧拉距离相似度。与给定颜色color的rgb欧拉距离小于等于threshold时匹配。
- "rgb+": 加权rgb欧拉距离匹配(LAB Delta E)。
- "hs": hs欧拉距离匹配。hs为HSV空间的色调值。
- 返回 <Boolean>
返回两个颜色是否相似。
colors.equals(color1, color2)#
返回两个颜色是否相等。*注意该函数会忽略Alpha通道的值进行比较。
log(colors.equals("#112233", "#112234"));
log(colors.equals(0xFF112233, 0xFF223344));
colors.BLACK#
黑色,颜色值 #FF000000
colors.DKGRAY#
深灰色,颜色值 #FF444444
colors.GRAY#
灰色,颜色值 #FF888888
colors.LTGRAY#
亮灰色,颜色值 #FFCCCCCC
colors.WHITE#
白色,颜色值 #FFFFFFFF
colors.RED#
红色,颜色值 #FFFF0000
colors.GREEN#
绿色,颜色值 #FF00FF00
colors.BLUE#
蓝色,颜色值 #FF0000FF
colors.YELLOW#
黄色,颜色值 #FFFFFF00
colors.CYAN#
青色,颜色值 #FF00FFFF
colors.MAGENTA#
品红色,颜色值 #FFFF00FF
colors.TRANSPARENT#
透明,颜色值 #00000000
Images#
images模块提供了一些手机设备中常见的图片处理函数,包括截图、读写图片、图片剪裁、旋转、二值化、找色找图等。
该模块分为两个部分,找图找色部分和图片处理部分。
需要注意的是,image对象创建后尽量在不使用时进行回收,同时避免循环创建大量图片。因为图片是一种占用内存比较大的资源,尽管Auto.js通过各种方式(比如图片缓存机制、垃圾回收时回收图片、脚本结束时回收所有图片)尽量降低图片资源的泄漏和内存占用,但是糟糕的代码仍然可以占用大量内存。
Image对象通过调用recycle()
函数来回收。例如:
// 读取图片
var img = images.read("./1.png");
//对图片进行操作
...
// 回收图片
img.recycle();
例外的是,caputerScreen()
返回的图片不需要回收。
图片处理#
images.read(path)#
path
<string> 图片路径
读取在路径path的图片文件并返回一个Image对象。如果文件不存在或者文件无法解码则返回null。
images.load(url)#
url
<string> 图片URL地址
加载在地址URL的网络图片并返回一个Image对象。如果地址不存在或者图片无法解码则返回null。
images.copy(img)#
img
<Image> 图片- 返回 <Image>
复制一张图片并返回新的副本。该函数会完全复制img对象的数据。
images.save(image, path[, format = "png", quality = 100])#
把图片image以PNG格式保存到path中。如果文件不存在会被创建;文件存在会被覆盖。
//把图片压缩为原来的一半质量并保存
var img = images.read("/sdcard/1.png");
images.save(img, "/sdcard/1.jpg", "jpg", 50);
app.viewFile("/sdcard/1.jpg");
images.fromBase64(base64)#
base64
<string> 图片的Base64数据- 返回 <Image>
解码Base64数据并返回解码后的图片Image对象。如果base64无法解码则返回null
。
images.toBase64(img[, format = "png", quality = 100])#
把图片编码为base64数据并返回。
images.fromBytes(bytes)#
bytes
<byte[]> 字节数组
解码字节数组bytes并返回解码后的图片Image对象。如果bytes无法解码则返回null
。
images.toBytes(img[, format = "png", quality = 100])#
把图片编码为字节数组并返回。
images.clip(img, x, y, w, h)#
从图片img的位置(x, y)处剪切大小为w * h的区域,并返回该剪切区域的新图片。
var src = images.read("/sdcard/1.png");
var clip = images.clip(src, 100, 100, 400, 400);
images.save(clip, "/sdcard/clip.png");
images.resize(img, size[, interpolation])#
[v4.1.0新增]
img
<Image> 图片size
<Array> 两个元素的数组[w, h],分别表示宽度和高度;如果只有一个元素,则宽度和高度相等interpolation
<string> 插值方法,可选,默认为"LINEAR"(线性插值),可选的值有:NEAREST
最近邻插值LINEAR
线性插值(默认)AREA
区域插值CUBIC
三次样条插值LANCZOS4
Lanczos插值 参见InterpolationFlags
返回 <Image>
调整图片大小,并返回调整后的图片。例如把图片放缩为200*300:images.resize(img, [200, 300])
。
images.scale(img, fx, fy[, interpolation])#
[v4.1.0新增]
img
<Image> 图片fx
<number> 宽度放缩倍数fy
<number> 高度放缩倍数interpolation
<string> 插值方法,可选,默认为"LINEAR"(线性插值),可选的值有:NEAREST
最近邻插值LINEAR
线性插值(默认)AREA
区域插值CUBIC
三次样条插值LANCZOS4
Lanczos插值 参见InterpolationFlags
返回 <Image>
放缩图片,并返回放缩后的图片。例如把图片变成原来的一半:images.scale(img, 0.5, 0.5)
。
images.rotate(img, degress[, x, y])#
[v4.1.0新增]
img
<Image> 图片degress
<number> 旋转角度。x
<number> 旋转中心x坐标,默认为图片中点y
<number> 旋转中心y坐标,默认为图片中点- 返回 <Image>
将图片逆时针旋转degress度,返回旋转后的图片对象。
例如逆时针旋转90度为images.rotate(img, 90)
。
images.concat(img1, image2[, direction])#
[v4.1.0新增]
img1
<Image> 图片1img2
<Image> 图片2- direction <string> 连接方向,默认为"RIGHT",可选的值有:
LEFT
将图片2接到图片1左边RIGHT
将图片2接到图片1右边TOP
将图片2接到图片1上边BOTTOM
将图片2接到图片1下边
- 返回 <Image>
连接两张图片,并返回连接后的图像。如果两张图片大小不一致,小的那张将适当居中。
images.grayscale(img)#
[v4.1.0新增]
img
<Image> 图片- 返回 <Image>
灰度化图片,并返回灰度化后的图片。
image.threshold(img, threshold, maxVal[, type])#
[v4.1.0新增]
img
<Image> 图片threshold
<number> 阈值maxVal
<number> 最大值type
<string> 阈值化类型,默认为"BINARY",参见ThresholdTypes, 可选的值:BINARY
BINARY_INV
TRUNC
TOZERO
TOZERO_INV
OTSU
TRIANGLE
返回 <Image>
将图片阈值化,并返回处理后的图像。可以用这个函数进行图片二值化。例如:images.threshold(img, 100, 255, "BINARY")
,这个代码将图片中大于100的值全部变成255,其余变成0,从而达到二值化的效果。如果img是一张灰度化图片,这个代码将会得到一张黑白图片。
可以参考有关博客(比如threshold函数的使用)或者OpenCV文档threshold。
images.adaptiveThreshold(img, maxValue, adaptiveMethod, thresholdType, blockSize, C)#
[v4.1.0新增]
img
<Image> 图片maxValue
<number> 最大值adaptiveMethod
<string> 在一个邻域内计算阈值所采用的算法,可选的值有:MEAN_C
计算出领域的平均值再减去参数C的值GAUSSIAN_C
计算出领域的高斯均值再减去参数C的值
thresholdType
<string> 阈值化类型,可选的值有:BINARY
BINARY_INV
blockSize
<number> 邻域块大小C
<number> 偏移值调整量- 返回 <Image>
对图片进行自适应阈值化处理,并返回处理后的图像。
可以参考有关博客(比如threshold与adaptiveThreshold)或者OpenCV文档adaptiveThreshold。
images.cvtColor(img, code[, dstCn])#
[v4.1.0新增]
img
<Image> 图片code
<string> 颜色空间转换的类型,可选的值有一共有205个(参见ColorConversionCodes),这里只列出几个:BGR2GRAY
BGR转换为灰度BGR2HSV
BGR转换为HSV- ``
dstCn
<number> 目标图像的颜色通道数量,如果不填写则根据其他参数自动决定。- 返回 <Image>
对图像进行颜色空间转换,并返回转换后的图像。
可以参考有关博客(比如颜色空间转换)或者OpenCV文档cvtColor。
images.inRange(img, lowerBound, upperBound)#
[v4.1.0新增]
将图片二值化,在lowerBound~upperBound范围以外的颜色都变成0,在范围以内的颜色都变成255。
例如images.inRange(img, "#000000", "#222222")
。
images.interval(img, color, interval)#
[v4.1.0新增]
将图片二值化,在color-interval ~ color+interval范围以外的颜色都变成0,在范围以内的颜色都变成255。这里对color的加减是对每个通道而言的。
例如images.interval(img, "#888888", 16)
,每个通道的颜色值均为0x88,加减16后的范围是[0x78, 0x98],因此这个代码将把#787878~#989898的颜色变成#FFFFFF,而把这个范围以外的变成#000000。
images.blur(img, size[, anchor, type])#
[v4.1.0新增]
img
<Image> 图片size
<Array> 定义滤波器的大小,如[3, 3]anchor
<Array> 指定锚点位置(被平滑点),默认为图像中心type
<string> 推断边缘像素类型,默认为"DEFAULT",可选的值有:CONSTANT
iiiiii|abcdefgh|iiiiiii with some specified iREPLICATE
aaaaaa|abcdefgh|hhhhhhhREFLECT
fedcba|abcdefgh|hgfedcbWRAP
cdefgh|abcdefgh|abcdefgREFLECT_101
gfedcb|abcdefgh|gfedcbaTRANSPARENT
uvwxyz|abcdefgh|ijklmnoREFLECT101
same as BORDER_REFLECT_101DEFAULT
same as BORDER_REFLECT_101ISOLATED
do not look outside of ROI
- 返回 <Image>
对图像进行模糊(平滑处理),返回处理后的图像。
可以参考有关博客(比如实现图像平滑处理)或者OpenCV文档blur。
images.medianBlur(img, size)#
[v4.1.0新增]
img
<Image> 图片size
<Array> 定义滤波器的大小,如[3, 3]- 返回 <Image>
对图像进行中值滤波,返回处理后的图像。
可以参考有关博客(比如实现图像平滑处理)或者OpenCV文档blur。
images.gaussianBlur(img, size[, sigmaX, sigmaY, type])#
[v4.1.0新增]
img
<Image> 图片size
<Array> 定义滤波器的大小,如[3, 3]sigmaX
<number> x方向的标准方差,不填写则自动计算sigmaY
<number> y方向的标准方差,不填写则自动计算type
<string> 推断边缘像素类型,默认为"DEFAULT",参见images.blur
- 返回 <Image>
对图像进行高斯模糊,返回处理后的图像。
可以参考有关博客(比如实现图像平滑处理)或者OpenCV文档GaussianBlur。
images.matToImage(mat)#
[v4.1.0新增]
mat
<Mat> OpenCV的Mat对象- 返回 <Image>
把Mat对象转换为Image对象。
找图找色#
images.requestScreenCapture([landscape])#
landscape
<boolean> 布尔值, 表示将要执行的截屏是否为横屏。如果landscape为false, 则表示竖屏截图; true为横屏截图。
向系统申请屏幕截图权限,返回是否请求成功。
第一次使用该函数会弹出截图权限请求,建议选择“总是允许”。
这个函数只是申请截图权限,并不会真正执行截图,真正的截图函数是captureScreen()
。
该函数在截图脚本中只需执行一次,而无需每次调用captureScreen()
都调用一次。
如果不指定landscape值,则截图方向由当前设备屏幕方向决定,因此务必注意执行该函数时的屏幕方向。
建议在本软件界面运行该函数,在其他软件界面运行时容易出现一闪而过的黑屏现象。
示例:
//请求截图
if(!requestScreenCapture()){
toast("请求截图失败");
exit();
}
//连续截图10张图片(间隔1秒)并保存到存储卡目录
for(var i = 0; i < 10; i++){
captureScreen("/sdcard/screencapture" + i + ".png");
sleep(1000);
}
该函数也可以作为全局函数使用。
images.captureScreen()#
截取当前屏幕并返回一个Image对象。
没有截图权限时执行该函数会抛出SecurityException。
该函数不会返回null,两次调用可能返回相同的Image对象。这是因为设备截图的更新需要一定的时间,短时间内(一般来说是16ms)连续调用则会返回同一张截图。
截图需要转换为Bitmap格式,从而该函数执行需要一定的时间(0~20ms)。
另外在requestScreenCapture()执行成功后需要一定时间后才有截图可用,因此如果立即调用captureScreen(),会等待一定时间后(一般为几百ms)才返回截图。
例子:
//请求横屏截图
requestScreenCapture(true);
//截图
var img = captureScreen();
//获取在点(100, 100)的颜色值
var color = images.pixel(img, 100, 100);
//显示该颜色值
toast(colors.toString(color));
该函数也可以作为全局函数使用。
images.captureScreen(path)#
path
<string> 截图保存路径
截取当前屏幕并以PNG格式保存到path中。如果文件不存在会被创建;文件存在会被覆盖。
该函数不会返回任何值。该函数也可以作为全局函数使用。
images.pixel(image, x, y)#
返回图片image在点(x, y)处的像素的ARGB值。
该值的格式为0xAARRGGBB,是一个"32位整数"(虽然JavaScript中并不区分整数类型和其他数值类型)。
坐标系以图片左上角为原点。以图片左侧边为y轴,上侧边为x轴。
images.findColor(image, color, options)#
在图片中寻找颜色color。找到时返回找到的点Point,找不到时返回null。
选项包括:
region
<Array> 找色区域。是一个两个或四个元素的数组。(region[0], region[1])表示找色区域的左上角;region[2]*region[3]表示找色区域的宽高。如果只有region只有两个元素,则找色区域为(region[0], region[1])到屏幕右下角。如果不指定region选项,则找色区域为整张图片。threshold
<number> 找色时颜色相似度的临界值,范围为0~255(越小越相似,0为颜色相等,255为任何颜色都能匹配)。默认为4。threshold和浮点数相似度(0.0~1.0)的换算为 similarity = (255 - threshold) / 255.
该函数也可以作为全局函数使用。
一个循环找色的例子如下:
requestScreenCapture();
//循环找色,找到红色(#ff0000)时停止并报告坐标
while(true){
var img = captureScreen();
var point = findColor(img, "#ff0000");
if(point){
toast("找到红色,坐标为(" + point.x + ", " + point.y + ")");
}
}
一个区域找色的例子如下:
//读取本地图片/sdcard/1.png
var img = images.read("/sdcard/1.png");
//判断图片是否加载成功
if(!img){
toast("没有该图片");
exit();
}
//在该图片中找色,指定找色区域为在位置(400, 500)的宽为300长为200的区域,指定找色临界值为4
var point = findColor(img, "#00ff00", {
region: [400, 500, 300, 200],
threshold: 4
});
if(point){
toast("找到啦:" + point);
}else{
toast("没找到");
}
images.findColorInRegion(img, color, x, y[, width, height, threshold])#
区域找色的简便方法。
相当于
images.findColor(img, color, {
region: [x, y, width, height],
threshold: threshold
});
该函数也可以作为全局函数使用。
images.findColorEquals(img, color[, x, y, width, height])#
在图片img指定区域中找到颜色和color完全相等的某个点,并返回该点的左边;如果没有找到,则返回null
。
找色区域通过x
, y
, width
, height
指定,如果不指定找色区域,则在整张图片中寻找。
该函数也可以作为全局函数使用。
示例: (通过找QQ红点的颜色来判断是否有未读消息)
requestScreenCapture();
launchApp("QQ");
sleep(1200);
var p = findColorEquals(captureScreen(), "#f64d30");
if(p){
toast("有未读消息");
}else{
toast("没有未读消息");
}
images.findMultiColors(img, firstColor, colors[, options])#
img
<Image> 要找色的图片firstColor
<number> | <string> 第一个点的颜色colors
<Array> 表示剩下的点相对于第一个点的位置和颜色的数组,数组的每个元素为[x, y, color]options
<Object> 选项,包括:region
<Array> 找色区域。是一个两个或四个元素的数组。(region[0], region[1])表示找色区域的左上角;region[2]*region[3]表示找色区域的宽高。如果只有region只有两个元素,则找色区域为(region[0], region[1])到屏幕右下角。如果不指定region选项,则找色区域为整张图片。threshold
<number> 找色时颜色相似度的临界值,范围为0~255(越小越相似,0为颜色相等,255为任何颜色都能匹配)。默认为4。threshold和浮点数相似度(0.0~1.0)的换算为 similarity = (255 - threshold) / 255.
多点找色,类似于按键精灵的多点找色,其过程如下:
- 在图片img中找到颜色firstColor的位置(x0, y0)
- 对于数组colors的每个元素[x, y, color],检查图片img在位置(x + x0, y + y0)上的像素是否是颜色color,是的话返回(x0, y0),否则继续寻找firstColor的位置,重新执行第1步
- 整张图片都找不到时返回
null
例如,对于代码images.findMultiColors(img, "#123456", [[10, 20, "#ffffff"], [30, 40, "#000000"]])
,假设图片在(100, 200)的位置的颜色为#123456, 这时如果(110, 220)的位置的颜色为#fffff且(130, 240)的位置的颜色为#000000,则函数返回点(100, 200)。
如果要指定找色区域,则在options中指定,例如:
var p = images.findMultiColors(img, "#123456", [[10, 20, "#ffffff"], [30, 40, "#000000"]], {
region: [0, 960, 1080, 960]
});
images.detectsColor(image, color, x, y[, threshold = 16, algorithm = "diff"])#
image
<Image> 图片color
<number> | <string> 要检测的颜色x
<number> 要检测的位置横坐标y
<number> 要检测的位置纵坐标threshold
<number> 颜色相似度临界值,默认为16。取值范围为0~255。algorithm
<string> 颜色匹配算法,包括:- "equal": 相等匹配,只有与给定颜色color完全相等时才匹配。
- "diff": 差值匹配。与给定颜色的R、G、B差的绝对值之和小于threshold时匹配。
"rgb": rgb欧拉距离相似度。与给定颜色color的rgb欧拉距离小于等于threshold时匹配。
"rgb+": 加权rgb欧拉距离匹配(LAB Delta E)。
- "hs": hs欧拉距离匹配。hs为HSV空间的色调值。
返回图片image在位置(x, y)处是否匹配到颜色color。用于检测图片中某个位置是否是特定颜色。
一个判断微博客户端的某个微博是否被点赞过的例子:
requestScreenCapture();
//找到点赞控件
var like = id("ly_feed_like_icon").findOne();
//获取该控件中点坐标
var x = like.bounds().centerX();
var y = like.bounds().centerY();
//截图
var img = captureScreen();
//判断在该坐标的颜色是否为橙红色
if(images.detectsColor(img, "#fed9a8", x, y)){
//是的话则已经是点赞过的了,不做任何动作
}else{
//否则点击点赞按钮
like.click();
}
images.findImage(img, template[, options])#
img
<Image> 大图片template
<Image> 小图片(模板)options
<Object> 找图选项
找图。在大图片img中查找小图片template的位置(模块匹配),找到时返回位置坐标(Point),找不到时返回null。
选项包括:
threshold
<number> 图片相似度。取值范围为0~1的浮点数。默认值为0.9。region
<Array> 找图区域。参见findColor函数关于region的说明。level
<number> 一般而言不必修改此参数。不加此参数时该参数会根据图片大小自动调整。找图算法是采用图像金字塔进行的, level参数表示金字塔的层次, level越大可能带来越高的找图效率,但也可能造成找图失败(图片因过度缩小而无法分辨)或返回错误位置。因此,除非您清楚该参数的意义并需要进行性能调优,否则不需要用到该参数。
该函数也可以作为全局函数使用。
一个最简单的找图例子如下:
var img = images.read("/sdcard/大图.png");
var templ = images.read("/sdcard/小图.png");
var p = findImage(img, templ);
if(p){
toast("找到啦:" + p);
}else{
toast("没找到");
}
稍微复杂点的区域找图例子如下:
auto();
requestScreenCapture();
var wx = images.read("/sdcard/微信图标.png");
//返回桌面
home();
//截图并找图
var p = findImage(captureScreen(), wx, {
region: [0, 50],
threshold: 0.8
});
if(p){
toast("在桌面找到了微信图标啦: " + p);
}else{
toast("在桌面没有找到微信图标");
}
images.findImageInRegion(img, template, x, y[, width, height, threshold])#
区域找图的简便方法。相当于:
images.findImage(img, template, {
region: [x, y, width, height],
threshold: threshold
})
该函数也可以作为全局函数使用。
images.matchTemplate(img, template, options)#
[v4.1.0新增]
img
<Image> 大图片template
<Image> 小图片(模板)options
<Object> 找图选项:- 返回 <MatchingResult>
在大图片中搜索小图片,并返回搜索结果MatchingResult。该函数可以用于找图时找出多个位置,可以通过max参数控制最大的结果数量。也可以对匹配结果进行排序、求最值等操作。
MatchingResult#
[v4.1.0新增]
matches#
- <Array> 匹配结果的数组。
数组的元素是一个Match对象:
point
<Point> 匹配位置similarity
<number> 相似度
例如:
var result = images.matchTemplate(img, template, {
max: 100
});
result.matches.forEach(match => {
log("point = " + match.point + ", similarity = " + match.similarity);
});
points#
- <Array> 匹配位置的数组。
first()#
- 返回 <Match>
第一个匹配结果。如果没有任何匹配,则返回null
。
last()#
- 返回 <Match>
最后一个匹配结果。如果没有任何匹配,则返回null
。
leftmost()#
- 返回 <Match>
位于大图片最左边的匹配结果。如果没有任何匹配,则返回null
。
topmost()#
- 返回 <Match>
位于大图片最上边的匹配结果。如果没有任何匹配,则返回null
。
rightmost()#
- 返回 <Match>
位于大图片最右边的匹配结果。如果没有任何匹配,则返回null
。
bottommost()#
- 返回 <Match>
位于大图片最下边的匹配结果。如果没有任何匹配,则返回null
。
best()#
- 返回 <Match>
相似度最高的匹配结果。如果没有任何匹配,则返回null
。
worst()#
- 返回 <Match>
相似度最低的匹配结果。如果没有任何匹配,则返回null
。
sortBy(cmp)#
- cmp <Function>|<string> 比较函数,或者是一个字符串表示排序方向。例如"left"表示将匹配结果按匹配位置从左往右排序、"top"表示将匹配结果按匹配位置从上往下排序,"left-top"表示将匹配结果按匹配位置从左往右、从上往下排序。方向包括
left
(左),top
(上),right
(右),bottom
(下)。 - <MatchingResult>
对匹配结果进行排序,并返回排序后的结果。
var result = images.matchTemplate(img, template, {
max: 100
});
log(result.sortBy("top-right"));
Image#
表示一张图片,可以是截图的图片,或者本地读取的图片,或者从网络获取的图片。
Image.getWidth()#
返回以像素为单位图片宽度。
Image.getHeight()#
返回以像素为单位的图片高度。
Image.saveTo(path)#
path
<string> 路径
把图片保存到路径path。(如果文件存在则覆盖)
Image.pixel(x, y)#
返回图片image在点(x, y)处的像素的ARGB值。
该值的格式为0xAARRGGBB,是一个"32位整数"(虽然JavaScript中并不区分整数类型和其他数值类型)。
坐标系以图片左上角为原点。以图片左侧边为y轴,上侧边为x轴。
##
Point#
findColor, findImage返回的对象。表示一个点(坐标)。
Point.x#
横坐标。
Point.y#
纵坐标。